
Volume 1

Price £1.20

7 Rise User Memory Editor

13
TheMagazineAnd SupportGroup

ExclusivelyFor Users Of TheArchimedes

/ I I / / I I I \ \ \ \

\ \ \ \ \ \ \ \ \ \

Volume 1 Issue 3

January/February 1988RISC USER
CONTENTS

Editorial

News and Comment
AfCWliter Acorn's free word processor for the Archimedes

A Printer Buffer for the Archimedes
Improve the efficiency and throughput of your Archimedes

Archimedes Screen Super Saver
How to save and load screen displays fast

LogistlX for the Archimedes Major spreadsheet reviewed

Anti Alias Fonts for Humans
Mastering the use of fancy fonts

Arrays and Matrices
Powerful new features in Basic V

Archimedes ViSUalS More highly effective graphics routines

Rise User Memory Editor
Display and edit the contents of Archie's memory

Over the RainbOW Using the 256 colour modes
Beeb to Archimedes Links

We review two packages

System Delta PIUS Minerva's WIMP database reviewed

A Memory Map for Archie
Find out how memory is allocated on your Archimedes

Hints & TipS Another selection from our experts

CC'S ROM Podule Read about Computer Concepts' ROM board

3
4
5
6

10
12

15

16
18

22
25

26
28

29
31

RISC User is published by BEEBUG Ltd.

Co-Editors: Mike Williams, Dr Lee Calcraft

Assistant Editor: Kristina Lucas

Production Assistant: YolandaTuruelo

Subscriptions: Mandy Mileham

BEEBUG, Dolphin Place, Holywell Hill, St.Albans,

Herts AL1 1 EX. Tel. St.Albans (0727) 40303

All rights reserved. No part of this publication may be

reproduced without prior written permission of the Publisher.

The Publisher cannot accept any responsibility whatsoever for

errors in articles, programs, or advertisements published. The

opinions expressed on the pages of this journal are those of

the authors and do not necessarily represent those of the

Publisher, BEEBUG Limited.

BEEBUG Ltd (c) 1988

Printed by Arlon House

I ////////
The Archimedes Magazine
and Support Group.

VA\in////////
We hope that we have now begun to establish a recogniseable 'RISC user* flavour, both with

regard to style and content. We are grateful to those who have written to us already with their

opinions on the magazine, but we will continue to listen carefully to the views and comments of

all RISC User members who communicate with us. We will also be delighted to receive

programs and articles for potential publication and we do pay for all material used. To help

would-be contributors we have prepared a set of notes to provide some guidance on style and

other matters. To receive a copy please ask for "RISC User Contributors' Notes" and send us

an A5 SAE. The address for all communications appears at the foot of the contents page

opposite.

As reported on the news page following, Acorn did not manage to send out more than a handful

of Series One OS ROMs before Christmas, and it now appears likely that many users will still

be without the new ROM at the time you receive this copy of RISC User. Several programs and

articles in this issue were prepared on the basis that all readers would by this time have Series

One installed in their machines. In view of the likely situation, we have added additional markers

at the head of articles where appropriate showing where use of the Series One OS is essential

(and in the case of the article on Fonts, the Series One Welcome Disc is required as well). We
very much hope that Series One will be the standard for everybody by the time of the next issue

of RISC User, and it is our firm intention to concentrate on Series One only as soon as possible.

Do make sure you have returned your owner registration form to Acorn as this is the only way to

obtain the upgrade.

We have established the monthly disc as an ideal companion to your copy of RISC User. To
make this even better value, we are endeavouring to add additional items on to each disc, and

so far all three discs have been filled to near capacity. On the disc for issue one we were able to

include Computer Concepts' stunning animation of Newton's cradle, issue two contained a

number of equally impressive screen displays from Clares, showing the use of their Artisan and

Graphic Writer packages. For this month's disc we have included some of the best entries in our

Painting Competition, the results of which are given on the next page. You will be able to load

these into the Welcome paint package to make further modifications if you so wish. See the

back cover for details.

Please note that this issue of RISC User covers both January and February (we publish ten

times a year). The March issue should be with you near the beginning of that month.

A round-up of the latest news and comment in the Archimedes

world compiled by Mike Williams. All prices quoted below

include VAT.

ACORN
The new managing director of Acorn replacing Brian Long

who resigned suddenly last year, is Harvey Coleman of Olivetti

(Acorn's majority shareholder). We very much hope that this will

remove some of the current uncertainty at Acorn and that better

times now lie ahead.

We reported in the last issue that Acorn expected to start

shipping the 1 .2 OS ROM before Christmas to existing owners of

the Archimedes. Despite the fact that supplies were in the main

warehouse, apparently very few were sent out in December and

the latest indication is that the new ROM will be sent out during

January, to be followed shortly after by ArcWriter (see article in

this issue). We stress again that you must have returned the

owner registration form that comes with your Archimedes to

receive these free up(

Whether Acorn has had second thoughts or not we don't

know, but a spokesman for Acorn has stated that there is now

no immediate intention to change the price of 'C, Fortran or

Pascal as was suggested last month.

The offer of 0% finance spread over 12 months has proved

very popular with potential purchasers, and Acorn has extended

this to the 31st January. Moreover, this deal now covers the

latest A440 as well as the A305, A310 and A310M. BEEBUG
normally holds stocks of all these machines, and all the details

required to purchase through this scheme can be given over the

phone.

MORE ART FOR THE ARCHIMEDES
Another art package for the Archimedes has been released,

this time by Fairhurst Instruments Ltd. It is claimed to be the first

art program to use a 256 colour mode and is available at the

special budget price of £19.95. The package is mouse-driven

using icons, and while not offering all the facilities of Clares'

Artisan (reviewed in the first issue of RISC User), does provide a

worthwhile set of tools for the budding artist. Arctist is available

from Fairhurst Instruments Ltd, Dean Court, Woodford Road,

Wilmslow, Cheshire SK9 2LT or telephone (0625) 525694.

MORE SOFTWARE FROM CLARES
The full versions of Clares' Artisan and Graphic Writer

(formerly called Image Writer), which were reviewed in the first

and second issues of RISC User respectively, are now readily

available at £39.95 and £29.95 (10% discount to RISC User

members - see price list). Clares has said that a utilities disc for

use with Artisan should be available by the end of January. This

will provide an upgraded Integrex colour printer dump, dumps for

a number of colour dot matrix printers, a number of slick fade

routines, and probably some additional sprites and graphics.

Details have yet to be finalised as has the price, but this should

be under £20. Clares' promised database package, Alphabase,

should also be out at about the same time (at a cost of £49.95),

and we hope to be able to review this in the next issue of RISC

User. For further details contact Clares Micro Supplies, 98

Middlewich Road, Rudheath, Northwich, Cheshire CW9 7DA or

telephone (0606) 48511.

BBC MICROLIVE
We understand that the BBC are planning a special

Microlive programme on graphics and animation in which the

Archimedes will be heavily featured. There is no firm date yet for

the transmission but look out around the end of

January/beginning of February.

BEEBUG PAINTING COMPETITION
In the first issue of RISC User we invited readers to submit

their best efforts using the Painting program on the Welcome

disc. The winner, out of the entries received, has to be Kathie

Lewis of Hampton Hill, Middlesex, but close runners up were

Elliott and Zoe Hughes (age 12 and 10 respectively) from

Swanwick, Derbyshire, both of whom submitted individual

pictures, and Jeroen Boomgaardt from Enschede in the

Nerherlands who provided an excellent rendering of

Acorn's Archimedes poster. Our thanks and congratulations to all

who entered, and a prize of Artisan (thanks to Clares) has been

sent to the winner. Clares has generously provided a second

copy of Artisan and this is winging its way to Elliott and Zoe for

their splendid efforts. We will be including the best of the pictures

submitted on this month's magazine disc. mm

RISC User January/February 1988

REVIEWS ArcWriter
Mike Williams investigates ArcWriter, Acorn's free word processor for Archimedes users.

When the Archimedes was launched, Acorn
promised that all early purchasers of the machine
would be supplied eventually with a word processor
free of charge. ArcWriter is the result, and Acorn
says that it will continue to supply ArcWriter to all

new owners (who register with Acorn) for the
foreseeable future.

ArcWriter is a large (132K) Basic program which
makes full use of the WIMP environment to provide

a largely WYSIWYG style of word processor. There
is one large window which contains your text,

displayed as black on white, and which provides an
overall limit to line width. Pressing the menu button

on the mouse with the pointer in the text window
displays the edit mode menu on screen. From here
you can select fonts (Elite, pica, enlarged, subscript

and superscript) and underline text, all displayed as
such on the screen.

Screen formatting is governed by a ruler

measured in centimetres, and page margins,
header and footer space is likewise specified in the

same units. You can select paper size too (A4 and
A5 in my version) but I believe other sizes will be
possible). Tab stops are selected from a Tab 'well'

and positioned on the ruler as required using the

mouse pointer, a system that works well and is

easy to understand. One bonus is that the bottom of

each page shows up clearly on the screen as a
grey line between lines of text. This is always useful

information.

Text may be left, right or fully justified, or

centred. These options are also selected from icons

displayed with a ruler. In effect, every line of text

visible on the screen has its own individual ruler. If

the ruler is displayed on the screen then scrolling

the ruler is displayed on the screen then scrolling

through the text will show the ruler settings for each
line in turn.

It is also feasible to mark blocks of text by
moving the cursor to the start of a block, moving the

pointer to the end of the block and pressing the

adjust (right-hand mouse button). Once a block of

text has been marked in this way it can be deleted,

copied or moved elsewhere. In addition, ruler

formatting and justification can be applied to the

whole of the block.

The main menu bar across the foot of the screen
provides nine different menus including an exit from
ArcWriter. The other functions covered in this way
are:

1. System Configuration - this covers choice of

storage medium and printer.

2. Document Configuration - page layout, margins,

headers, footers etc.

3. Filing Functions - saving, loading, deleting text

files.

4. Search and Replace - this is case sensitive and
cannot be changed.

5. Page Location - go to any specified page.

6. Printing Functions - allows first and last page for

printing to be set.

7. Provision of Information - gives information about
current document and use of system resources.

8. System Functions - this permits the use of star

commands.

i have only been able to spend a limited time

with ArcWriter, but I like what I see, and could

readily see myself using this for many of my
Archimedes word processing requirements. My
main concern is with the visual quality of the display

as characters have a definite tendency to appear
blurred, but that is a function of the system not just

ArcWriter. In addition, ArcWriter has a noticeable

struggle to keep up when entering text at a

reasonable (two finger) speed. Maybe ArcWriter

doesn't provide all the features and sophistication of

commercial word processors, but then it is all for

free, at least to the user. fpTfl

RISC User January/February 1988

A PRINTER BUFFER FOR THE ARCHIMEDES

,

By Nic Van Someren O.S. 1 .2 only

Use this robust Printer Buffer to free your computer during long printouts
- whether of text files or programs.

The printer buffer described here assembles
as a relocatable module which will provide a
variable size printer buffer for your Archimedes.

You can set it to just 100 bytes, or to half a

megabyte if you wish. Once turned on, the

buffer will operate automatically whenever the

printer is engaged, and its contents will remain

intact even if Escape or Break are pressed;

though it is cleared on Ctrl- or Shift-Break and

on Reset. It also has an emergency Clear

facility, actioned by pressing the ALT key
simultaneously with Escape.

RUNNING THE PROGRAM
First of all, type in the program carefully, and

save it away. When it is run, if all goes well, it

will create on disc a relocatable module file

called BufModule. You can then load this by

typing:

*BUFMODULE
Or *RMLOAD BUFMODULE
To check that all is well, type:

*MODULES
This should show that the module is present.

Typing *HELP COM. should give further details.

The module also responds to:

*HELP BUFFER
and *HELP BUFFERS I ZE

As you will see from this, the buffer is

switched on and off with 'BUFFER ON and
'BUFFER OFF (the space before the

parameters "ON" and "OFF" is essential). You
can find the current buffer size {default size

16K) by typing:

*BUFFERSIZE

This Printer Buffer program will form a

part of a forthcoming book on the Arthur

Operating System from Dabbs Press. We
are most grateful to Nic Van Someren, the

program author, and to Dabbs Press for

permission to publish it here.

The allocation may be altered at any time that

the buffer is in an OFF state by typing:

'BUFFERSIZE n

where n is the size in bytes. This is decimal by

default, but may be preceded with "&" for hex,

or even"2_" if you are giving the new size in

binary.

The buffer appears to be extremely robust.

There are just two provisos to note. Firstly, the

contents of the buffer, but not the buffer itself,

are lost under an *RMTIDY - but this is unlikely

to be a problem. Secondly, because of what

appears to be a bug in Arthur 1.2, you cannot

extend the buffer size (using *BUFFERSIZE) if

another relocatable module has been loaded

above the buffer, or indeed if workspace for

another module has been allocated above the

buffer. In practice the problem is avoided by

ensuring that the buffer is the last module to be

loaded. So if you are using a 'BOOT file to set

up the RISC User Disc Menu and the Buffer,

the relevant lines might appear as follows:

QUIT
*RMENU
*BUFMODULE
*buffersize &8000 (Allocate 32K)

*BUFFER ON
*menu (Call the Menu)

This program is featured on this month's magazine

disc. For further details, see the back cover.

10 REM
20 REM Program
30 REM Requires
40 REM Version

50 REM Author
60 REM RISC Usei

70 REM Program
80:

90 DIM Q% 4000

100 FOR 1=4 TO 7 STEP 3

>BufSource4
Printer Buffer

OS Series One
A 1.04

Nic Van Someren
Jan/Feb 198 8

Subject to copyright

RISC User January/February 1988

A PRINTER BUFFER FOR THE ARCHIMEDES

110 P%=0:O%=Q%
120 [OPT I

130 /Module Header
140 EQUD
150 EQUD initialise
160 EQUD finalise
170 EQUD service
180 EQUD title
190 EQUD helpstring
200 EQUD helptable
210 EQUD 0;SWI chunk
220 EQUD 0;SWI handler
230 EQUD 0;SWI table
240 EQUD 0;SWI code
250. title
260 EQUS "PrinterBuffer"
270 EQUB
280 ALIGN
290. helpstring
300 EQUS "Printer Buffer"+

CHR$9+"1.04 (16 Dec 1987)"
310 EQUB
320 ALIGN
330. helptable
340 EQUS "Buffer"
350 EQUB
360 ALIGN
370 EQUD bufcommand
380 EQUD 600010001; flags
390 EQUD syntax
4 00 EQUD bufhelp
410 EQUS "BufferSize"
420 EQUB
430 ALIGN
440 EQUD sizecommand
450 EQUD &00010100
460 EQUD sizesyntax
470 EQUD sizehelp
4 80 EQUD
490.bufhelp
500 EQUS "*Buffer turns bu

ffer ON or OFF"
510 EQUB 13

520 EQUB 10

530. syntax
54 EQUS "Syntax: *Buffer

<ON|OFF>"
550 EQUB
560 .sizehelp
570 EQUS "*BufferSize with

out a parameter gives the si

ze of the extra buffer"
580 EQUB 13

590 EQUS "With one paramet
er, the value is taken as th

e new buffer size"
600 EQUB 13

610. sizesyntax
620 EQUS "Syntax: *BufferS

ize [<size>] M

630 EQUB
640 ALIGN
650. bufcommand
660 LDR R12, [R12]

670 LDRB R2, [R0],#1
680 ORR R2,R2,#&20
690 CMP R2,#ASC"o"
700 BNE badonoff
710 LDRB R2, [R0],#1
720 ORR R2,R2,#&20
730 CMP R2,#ASC"n"
740 BEQ setup
750 CMP R2,#ASC"f"
760 BNE badonoff
770 LDRB R2, [R0] , #1

780 ORR R2,R2,#&20
790 CMP R2,#ASC"f"
800 BEQ setdown
810. badonoff
820 ADR R0,bufneedonoff
830 ORR R14,R14,#l«28;Set

V flag for error
840 MOVS PC,R14
850 .bufneedonoff
860 EQUD &00123456
870 EQUS "*Buffer needs ON

or OFF after it"

880 EQUB
890 ALIGN
900 . sizecommand
910 STMFD R13!, (R14)

920 MOV R11,R12
930 LDR R12, [R12]

940 CMP R1,#0
950 BEQ tellsize
960 ADR R2,areweon
970 LDR R2, [R2]

980 CMP R2,#0
990 BNE ehangewhileon

1000 MOV R1,R0
1010 MOV R0,#10
1020 SWI "OS_ReadUnsigned"
1030 ADD R2,R2,#17
1040 LDR R10, [R12,#4]

1050 MOV R9,R2
1060 SUB R3,R2,R10
1070 MOV R2,R12
1080 MOV RQ,#13
1090 SWI "OS_Module"
1100 CMP R0,#13
1110 BNE osmodulebug
1120 STR R2, [RH]
1130 MOV R3,R9
1140 STR R3, [R2,#4]

1150 MOV R3,#&10
1160 STR R3, [R2]

1170 STR R3, [R2,#8]

1180 STR R3, [R2,#12]

1190 LDMFD R13!, (PC}

1200. tellsize

1210 SWI "OS_WriteS"
1220 EQUS "The extra printe

r buffer is "

1230 EQUB
124 ALIGN
1250 LDR R0, [R12,#4]

1260 SUB R0,R0,#17
1270 ADR Rl,numbuffer
1280 MOV R2,#ll
1290 SWI "OS_ConvertCardina

14"

1300 SWI "OS_Write0"
1310 SWI "OS_WriteS"
1320 EQUS " bytes long."

1330 EQUB 13

1340 EQUB 10

1350 EQUB
1360 ALIGN
1370 LDMFD R13!, {PC}

1380. osmodulebug
1390 LDMFD R13!, {R14}

1400 ORR R14,R14,*1«28
1410 MOVS PC.R14
1420 . ehangewhileon
1430 LDMFD R13!, {R14}

1440 ADR R0,changetext
1450 ORR R14,R14,#1«28
1460 MOVS PC,R14
1470.changetext
1480 EQUD &00123457
1490 EQUS "Buffer must be O

FF before changing size"
1500 EQUB
1510 ALIGN
1520.numbuffer
1530 EQUD
1540 EQUD
1550 EQUD
1560. initialise
1570 STMFD R13!, (R14

}

1580 MOV R1,R12
1590 LDR R12, [R12]

1600 CMP R12,#0;Check if al

ready initialised
1610 BNE startmeup
1620 MOV R0,#6
1630 MOV R3,#&4000; <« TH

IS IS THE DEFAULT SIZE (16K)

1640 SWI "OS_Module"
1650 STR R2, [Rl]

1660 MOV R12,R2
1670 STR R3, [R12,#4]

1680 MOV R3,#&10
1690 STR R3, [R12]

1700 STR R3, [R12,#8]

1710 STR R3, [112, #12]

1720. startmeup
1730 LDMFD R13!, {PC)

1740. finalise
1750 STMFD R13!, {R14}

RISC User January/February 1988

A PRINTER BUFFER FOR THE ARCHIMEDES&
1760 LDR R12, [R12] 2320 LDR R4, [R12,#12]

1770 BL setdown 2330 LDRB R0, [R12,R4]

1780 CMP R10,#0 2340 MOV R2,R0
1790 MOV R0,#7 2350 TST R6,#l«28
1800 MOV R2,R12 2360 BLEQ nextval
1810 SWINE "OS Module" 2370 STR R4, [R12,#12]

:820 LDMFD R13!, {PC} 2380 LDMFD R13
! , {R14]

1830. service 2390 BICS PC,R14,#1«29
1840 CMP Rl,#&27 2400.toaltflush
1850 MOVNE PC,R14 2410 STMFD R13!, {R0,Rl,R2,R
1860 STMFD R13!, {RQ,R1} 14}

1870 ADR Rl,areweon 2420 MOV R0,#&81
1880 MOV R0,#0 2430 MOV R1,#&FD;ALT key

1890 STR R0, [Rl] 2440 MOV R2,#&FF

1900 LDMFD R13!, {R0,R1} 2450 SWI "OS Byte"
1910 MOV PC,R14 2460 CMP R1,#&FF

1920 .areweon 2470 LDMFD R13
! , {R0, Rl, R2,R

1930 EQUD 14}

1940; +0 is start of buffer 2480 MOVNE PC,R14

from 2490 LDR R4, [R12]

1950; +4 is end of buffer fr 2500 STR R4, [R12,#8]

om 2510 STR R4, [R12,#12]

1960; +8 is the point for in 2520 MOV PC,R14

sertion 2530.tocountpurge
1970; +12 is the point for r 2540 TST R6,#l«28

emoval 2550 BNE toaltflush

1 98 O.nextval; Increment R4 2560 STMFD R13!, {R14

}

1990 LDR R5, [R12,#4] 2570 TSTP R6,R6

2000 ADD R4,R4,#1 2580 LDRCS R4, [R12,#8]

2010 CMP R4,R5 2590 BLCS nextval

2020 LDREQ R4, [R12] 2600 LDRCS R5, [R12,#12]

2030 MOVS PC,R14 2610 LDRCC R5, [R12,#8]

2040.isempty;Empty test 2620 LDRCC R4, [R12, #12]

2050 LDR R4, [R12,#8] 2630 SUBS Rl,R5,R4

2060 LDR R5, [R12,#12] 2640 BHI posspace
2070 CMP R4,R5 2650 LDR R4, [R12]

2080 MOV PC,R14 2660 LDR R5, [R12,#4]

2090. Isfull; Full test 2670 ADD R1,R1,R5

2100 STMFD R13!, {R14} 2680 SUB R1,R1,R4

2110 LDR R4, [R12,#8] 2690. posspace

2120 BL nextval 2700 MOV R2,R1,LSR #8

2130 LDR R5, [R12,#12] 2710 LDMFD R13!, {PC}

2140 CMP R4,R5 2720,myinsv

2150 LDMFD R13!, {PC} 2730 CMP Rl,#3

2160. topush; Byte to buff 2740 MOVNES PC,R14

2170 STMFD R13!, {R14} 2750 STMFD R13 ! ,
(R0, Rl, R4,

R

2180 BL isfull 5]

2190 LDMEQFD R13!,(R14} 2760 BL topush

2200 ORREQS PC,R14,#1«29 2770 LDMFD R13
! , {RO , Rl, R4 ,

R

2210 LDR R4, [R12,#8] 5, PC}

2220 STRB R0, [R12,R4] 2780.myremv

2230 BL nextval 2790 STMFD R13!, {R6}

2240 STR R4, [R12,#8] 2800 MOV R6,PC

2250 LDMFD R13!, {R14} 2810 CMP Rl,#3

2260 8ICS PC,R14,#1«29 2820 LDMNEFD R13!, {R6}

2270.topull;Byte from buff 2830 MOVNES PC,R14

2280 STMFD R13!, (R14) 2840 STMFD R13 ! , {Rl, R4 , R5}

2290 BL isempty 2850 BL topull

2300 LDMEQFD R13!, {R14} 2860 LDMFD R13
! ,

{Rl, R4 , R5,

R

2310 ORREQS PC,R14,#1«29 6, PC}

2870.mycnpv
2880 STMFD R13!, {R6}

2890 MOV R6,PC
2900 CMP Rl,#3
2910 LDMNEFD R13

! ,
{R6}

2920 MOVNES PC,R14
2930 STMFD R13!, {R4,R5}

2940 BL tocountpurge
2950 LDMFD R13!

,
{R4, R5,R6, P

C}

2960. setup
2970 STMFD R13!, (R14}

2980 ADR Rl, areweon; Get add
ress of ON flag
2990 LDR R0, [Rl];Load flag

3000 CMP R0,#O;Test if zero

3010 LDMNEFD R13!,[PC};If n

ot, buffer is running
3020 MVN R0,#0;Set flag
3030 STR R0, [Rl]

3040 MOV R2,R12
3050 LDR R0, [R12]; Empty buf
3060 STR R0, [R12,#8]

3070 STR R0, [R12,#12]

3080 MOV R0,jf&14

3090 ADR Rl,myinsv
3100 SWI "OS_Claim"
3110 MOV R0,#&15
3120 ADR Rl,myremv
3130 SWI "OS_Claim"
3140 MOV R0,#&16
3150 ADR Rl,mycnpv
3160 SWI "OS_Claim"
3170 LDMFD R13!, {PC}

3180. setdown
3190 STMFD R13!, {R14}

3200 MOV R2,R12
3210 ADR Rl,areweon;ON test

3220 LDR R0, [Rl]

3230 CMP R0 f #0

3240 LDMEQFD R13!, {PC}

3250 MOV R0,#0
3260 STR R0, [Rl]

3270 MOV R0,#&14
3280 ADR Rl,myinsv
3290 SWI MOS_Re lease"
3300 MOV R0,#&15
3310 ADR Rl,myremv
3320 SWI "OS_Release"
3330 MOV R0,#&16
3340 ADR Rl,mycnpv
3350 SWI "OS_Release"
3360 LDMFD R13!, {PC}

3370] :NEXT

3380 OSCLI"SAVE BufModule "

+STR$~Q%+"+"+STR$~P%
3390 OSCLI"SETTYPE BUFMODUL

E FFA"

RISC User January/February 1988

ARCHIMEDES SCREEN SUPER-SAVER

Lee Calcraft presents a fast, legal screen -save routine that takes the palette into account,
and copes with differently configured systems.

Three programs are presented here. The
first two are EXEC files, and should be entered

without line numbers (use Wordwise, Twin or

*BUILD). They should be saved with the names
FASTSAVE and FASTLOAD in the Library

directory of your disc, and should be given a file

type of &FFE (*SETTYPE filename FFE). Now,
if you type *FASTSAVE, a filename will be

requested. Enter the name of the screen
(previously saved using *SCREENSAVE). The
EXEC file will load in the screen, and create

two new files: one called Name+ (where Name
is the original name of the screen) containing

palette information, and the other, called

Name=, containing the screen itself. You can

now delete the original screen if you wish.

If you now type *FASTLOAD, and supply

the screen name e.g. Name (no "+" or "="

needed), the mode and palette will

automatically be set up, and the screen loaded
- all in about one quarter of the time taken by a

"SCREENLOAD command.

*
I
>FastSave

*
1

MODE0:VDU21,26:DIM B% 30

B%=((B%+3}DIV4) *4: !B%=148

! (B%+4)=7: ! (B%+8)=-1

VDU6:INPUT"Filename "file$:OS. (' SCREEN

L. "+file$) :file $=LEFT$ (file$ 9} :SYS

&31,B%,B%+&10:Z% = ! (B%+&10) :L% *! (B%+

614) :OFF:VDU24|

:

OS. ("SCREENS. '+file$
+"+") :OS. ("SAVE "+file$+"= "+STR$~Z%
+" +"+STR$~L%} :ON

*
I

>FastLoad
*

1

MODE0:VDU21,26:DIM B% 30

B%=((B%+3)DIV4)*4; !B%=148

! (B% + 4)=-1SYS
&31,B%,B%+&10:Z%=! (B%+&10)

VDU6:INPUT"Load Fi lename "file$ OS. ("

SCREEN. L. "+file$ +"+") :OS. ("LOAD"+fi

le$+"= "+STR$~Z^)

The third program sets up a slide show
using the "Fastload" principle. The screens

must all have been subjected to the FastSave

routine, and their names placed in the last line

of the program in place of the four given. The
word "END" is used as a terminator.

Notes:

All 3 routines use OS_ReadVDUVariables
(&31) to read the screen base address, and the

save routine also uses this call to obtain the

screen size. The palette is saved by setting the

graphics window to zero size, and using

*SCREENSAVE to save a single graphics pixel

together with mode and palette information. The
screen itself is saved using a straight *SAVE.

10 REM >FastShow
20 REM Fast-Load Slide Show

30 REM By Lee Calcraft
40 :

50 MODE 0:DIM B% 30:Z%=FNaddr
60 REPEAT: RESTORE
70 REPEAT

80 READ fileS
90 IF file$o"END" THEN PROCload (file

$) :OFF

100 A=INKEY(500)
110 UNTIL file$="END"
120 UNTIL FALSE
130 :

140 DEFFNaddr
150 B%=((B%+3)DIV4}*4

160 !B%=148: !
(B%+4)=-l

170 SYS &31,B%,B%+&10
180 =< (B%+&10)

190 :

200 DEFPROCload(file$)
210 OSCLI ("SCREENL. "+file$+"+")

220 OSCLI ("LOAD "+file$+"= "+STR$~Z%)

230 ENDPROC
240 :

250 DATA GARDEN, IMAGE1, IMAGE2, IMAGE3, E

Qj]

RISC User January/February I
s

;

>LOGiSTiX< for the Archimedes
Reviewed by Mike Williams

Logistix is the first new major application for the

Archimedes marketed by Acorn, and thus deserves
particular attention at this time. It provides a
significant spreadsheet facility combined with

database and time management functions (of which
more later), all of which can form the basis for some
impressive graphical displays.

Logistix is not a brand new product, having
been available for the IBM PC (and its clones) for

some time as well as for the Atari ST range.
Logistix has been transferred onto the Archimedes
(it was originally written in C) and is sold by Acorn
under the Acornsoft brand name. Logistix may be
the first applications product converted for the

Archimedes from other machines, but you can be
sure it won't be the last.

Logistix is an impressive product in many ways.
It consists of two discs together with a hefty two-

part manual, a multi-page reference card and a
keystrip, all packaged in two of Acorn's now
standard large-size packs. The manuals are, with

one glaring failure, well written and produced. As for

the software, insert the master disc, type in a single

command and the Logistix screen appears.

Anyone at all familiar with Acorn's View
Professional will immediately recognise the

fundamental concepts of Logistix. The screen
display (apart from the generated graphics) always

presents a spreadsheet style of layout with rows
and columns. It is on this basic 'worksheet' that the

intricacies of spreadsheets, database handling,

time management and even some word processing

are played out.

Many potential users may well feel daunted at

their first sight of Logistix. The software indulges in

none of the colourful windows and icons beloved of

other software packages produced for the

Archimedes, and you might as well throw the

mouse away altogether. What Logistix does offer is

a powerful and highly integrated package that does
not get in your way when solving problems.

The 'cell cursor' can be moved about the

worksheet with the usual cursor keys, and the Page

Up, Page Down, Home and End (or Copy) keys

also perform their expected functions. The
spreadsheet is an enormous 1024 columns by 2048

rows, so large that several different activities

relating to the same task can be set up in different

parts of the same worksheet. Twenty-seven of the

worksheet rows are visible on the screen at any
time, with four additional lines at the foot of the

screen for user communication. These are the

status line, the prompt line, the help line and the

entry line. All input is clearly prompted with a single

line of help information, while screenfuls of help text

are available on virtually everything that Logistix

can do.

SPREADSHEET
It is probably as a spreadsheet that Logistix will

most often be used. Individual cells may contain

text, values or expressions. Expressions,
referencing other cells can use the basic arithmetic

(+ - *
I

A
) and logical operators (=<>>< >= >=),

and nearly 30 mathematical functions (trig,

hyperbolic etc). Formulae are easily replicated,

either by direct input of the appropriate cell

references, or by moving the cell cursor to the same
cell positions. I found no difficulty in setting up a
spreadsheet for some of my own data, and quickly

learnt how to manipulate this.

DATABASE
To operate Logistix as a database the columns

of the spreadsheet layout are set up as fields

(column widths can be varied by the user), and the

rows correspond to individual records. Data of all

kinds can be entered in the same way as for a

spreadsheet, and by using cell references, it is very

easy to link spreadsheet and database together.

There are a number of specific database functions

{for summation, counting, averaging etc) and the !J

command provides sorting and searching functions.

Records may only be sorted on one whole key field

at a time, but successive sorts produce nested key

sorts. With a maximum 64 fields and 2047 records,

Logistix' capabilities as a database are clearly

limited, but should be quite adequate for the context

and expected use.

TIME MANAGEMENT
Logistix can handle the scheduling of resources

(including people) over time, including critical path

analysis. The software has a built in calendar that

can be tailored to any particular task. For example,

if you decide that a day is the basic unit of time

appropriate to a job, you can specify which days in

the calendar, and which hours per day are work

10 RISC User January/February 1988

<LOGFST(X< for the Archimedes

time. Once created, the calendar is then linked to

any selected column of the spreadsheet, and

following days (if day is the basic time unit) occupy

successive columns to the right. Resources can

then be scheduled with the help of Logistix, and a

critical path determined if this is appropriate.

There are many functions specific to time

management, in fact too numerous to mention. In

any case, scheduling a range of activities will take

much less time than it would to describe. Again, by

extensive use of cell references, the timesheet part

of your worksheet can be easily linked to both

spreadsheet and database applications. Thus a

change to any parameter will propagate throughout

ALL related cells.

j&, SSK'.o'nfi'^aii; na.-iiss
',,l-" :

GRAPHICS
The fourth prime function of Logistix is to allow

all kinds of data held and generated in a worksheet

to be displayed graphically. This uses a special

graphics language to generate any of eight different

types of chart (stacked bar charts, clustered bar

charts, pie charts, line graphs, stepped graphs,

spread and tick charts, scattergrams and Gantt

charts - for work scheduling). Note, though, that the

graphics produced are identical to those on the PC
- none of the Archimedes' full range of colour and

shade for example.

Using windows, up to four different charts may

be shown on the same screen. Again, reference to

cells (rather than to their contents) means that once

a graph display has been programmed, any

changes to the underlying values will automatically

be reflected in the graphical representation. Graphs

may also be output to a range of dot matrix printers

(including the Epson range), and to a good many
graph plotters. The graphics incorporate a number

of fonts for stylish text, but I fear that legends and

captions are not always that clear on the standard

Archimedes colour screen.

MANUAL
In part one, the first 35 pages provide an

excellent introduction to Logistix based around an

example file supplied on disc. This gets across the

fundamental features of spreadsheet, database,

timesheet and graphics. BUT, and this is really an

unforgiveable if understandable failure, the

illustrations and the text all relate to a 20 row screen

(standard for the PC) and thus all the cell

references in the text are out of step with the screen

display seen by the user (showing 27 rows)! In

addition I noted four misprints, which could well

confuse the less experienced user, and there could

be more.

Apart from that, I thought that the two-part

manual was clearly written and easy to follow, no

mean feat with software as demanding as Logistix.

The book also describes a further nine example

Logistix files which are supplied on disc.

CONCLUSION
This abbreviated description of Logistix hardly

does justice to its full potential, and much has been

omitted, for example the facility to program macros.

In reality, I suspect that it is only by using such

software that you will come to appreciate its full

value despite the absence of fancy windows, icons

and the like.

Two major features stand out: the obvious

power and speed that this software can provide on

an Archimedes, and the way you can efficiently and

directly create the applications you need. If you

want a thoroughly businesslike environment for

spreadsheet and timesheet applications then there

is nothing to beat Logistix on an Archimedes, and

the graphics are a real bonus. If you really want a

sophisticated database (or word processing)

package then look elsewhere. But Logistix does

what if is designed to do superbly well.

RISC User January/February 11

m&°mm mm wm mm fO.S. 1.2 only]

Lee Calcraft describes how to use anti-alias fonts with a minimum of brain-strain.

The Tutorial and Demonstration files on the

Welcome disc show the user what can be done
using the special so-called "Fancy Font" facility on

the Archimedes. A special Font Manager module
resident in ROM is used to reproduce selected

typefaces in a multitude of different sizes from font

files supplied on the Welcome disc. The result is

quite impressive, though if you try to use these

fonts at a much greater point size, the letters begin

to look a little moth-eaten. The Series One
Welcome disc contains two sets of font files, one for

a typeface called Trinity which looks similar to

Times Bold, and another called Corpus which is

reminiscent of the Courier typeface.

The way in which these fonts are used relies on

a technique called "anti-aliasing". This essentially

involves removing the jagged edges from displayed

characters by replacing pixels which should be half

on and half off, by ones of an intermediate shade.

The demonstrations on the Welcome disc use 8

different shades of pixel to create their effect.

Of course, there is much more to using the

Archimedes Fancy Fonts than anti-aliasing, and, as

is obvious from the Reference Manual, their user

interface is really quite complex. There are many
SWi calls, and VDU23 statements, all with masses
of parameters. What I propose to do, therefore, is to

present in the first instance a short program which

will display some text in Fancy Fonts. Then we will

take a look at a couple of procedures which parcel

up the Fancy Font calls in a more manageable way.

CONFIGURING FONT SIZE

Before making use of the machine's Fancy
Fonts, you will need to allocate a block of RAM for

storing font data. To do this, type:

*CONFIG. FONTSIZE 10

Then press Ctrl-Break. This allocates 40K of font

space (10 "pages" of 4K), which will be sufficient for

experimenting with fonts of up to around 35 point. If

you are using a 305, there should still be no

problems with this setting, providing that your

screen size is set to the default of (i.e. 80K of

screen RAM) - which is sufficient for running the two

accompanying programs.

SETTING UP YOUR DISC
There are six stages to getting a Fancy Font

onto the screen. The first involves setting up a disc

with the correct font files. The remaining five steps

may be executed in five lines of Basic, as we shall

see in a moment. To prepare your disc, you will

need to have on it a directory called FONTS. This

must have a sub-directory with the name of the font

which you will be using (either Trinity or Corpus).

This directory must itself contain a further directory

called MEDIUM. Finally MEDIUM must contain two

files, called IntMetrics and x90y45. These contain

scaling data for the fonts, and actual pixel data for

each character, respectively. Put another way, if

you are using the Trinity font, your disc should
contain the two files:

$. FONTS . TRINITY .MEDIUM. IntMetrics

$. FONTS . TRINITY .MEDIUM. x90y45

The simplest way to achieve this is to copy the

whole directory called $.FONTS.TRINITY from the

new Welcome disc, complete with its sub-directory

and files. First create the directory $.FONTS on

your work disc, then type:

*C0PY :0.$. FONTS. TRINITY : 0. $.FONTS. TR

INITY QPRF

and follow the prompts. The pair of files will use
around 40K of disc space.

RUNNING THE PROGRAM
Once you have done this, you may run the

program given in Listing 1. It should produce a

display similar to that in the accompanying
photograph. You will note that the time displayed is

around 6 seconds. If you now run the program a

second time, you should get a better result by a

factor of 60 or more. This is because when the

program is first run, the Font Manager must load the

font data from disc, and store it in the so-called font

cache. The second time around, there is no need

for this. As you will appreciate, this is a very

creditable result from a speed point of view. It is

certainly fast enough for use within a word
processor, as Acorn have demonstrated with

ArcWriter.

1. Output from listing 1 (when RUN for the

first time - subsequent runs will give a faster

time displayed)

12 RISC User January/February 1988

gffis°£&£&§ wmm® wm mmm

The Font Manager provides a special

command, *FONTLIST for checking the state of the

font cache. If you issue this now, you should see a

display similar to that in the accompanying screen

shot This lists Trinity 20x40 point {i.e. Trinity font

with horizontal point size 20, and vertical point size

40) as the only currently cached font. It reveals that

the cache has 40K allocated to it, and that 24K of

this is still free. We will return to this display later in

the article. But now we will take a look at the five

lines of Basic referred to earlier.

2. Output from typing "FONTLIST after

running prog 1.

Listing 1

10 REM >Fonttest6
20 REM Anti-Alias Font Demonstration
30 REM By Lee Calcraft
40 REM Calls Trinity font files

50 :

60 MODE12:TIME=0
70 :

80 REM Set Font Directory
90 *SET Font$Prefix S. FONTS

100 :

110 REM Set Transfer Function

120 VDU23,25,3,2,4,6,8,10,12,14
130 :

140 REM Set Anti-Aliasing Palette

150 VDU 23,25,&88,9,0,0,0,&FO,&FO,&FO

160 :

170 REM Cache required Font

180 SYS "Font_FindFont", , "Trinity. Medi

urn", 20*16, 40*16, 0,0
190 :

200 S$="TRINITY FONT - 20x40 point"

210 REM Paint Font

220 SYS "Font_Paint", ,S$,&10, 0,800

230 :

240 S$- M l 234567890+=- ! @#$

%*&*<)
[]<>?"

250 REM Paint Font

260 SYS "Font_Paint",,S$,&IG, 0,600

270 :

280 S$="Time taken = "+STR$ (TIME/100)

+

" seconds"
290 SYS "Font Paint ",, S$, SlO, 0, 400

WHAT THE PROGRAM DOES
The first key statement in the program given in

listing 1 appears at line 90. Its function is just to tell

the Font Manager where to find the relevant font

files. In this particular case, the command informs

the Font Manager that the TRINITY directory, with

its nested contents is located in $.FONTS. The next

instruction, at line 120, sets up the so-called

Transfer Function for the anti-aliasing. It determines

how many gradations will be used in the anti-

aliasing palette, and at what levels of brightness

these shades will be used. The user can select 2, 4,

8 or 16 levels, the latter requiring a 256 colour

mode. In our example we have used 8 levels of

shading. If you are using 4 levels only, you could

replace this line by VDU23,25,2,4,8,12|. For further

details of this rather nasty VDU call, the reader is

referred to the Reference Manual.

ANTI-ALIASING PALETTE
The next call, made in line 150, shares its first

two parameters (23,25) with the Transfer Function.

Its syntax is:

VDU23, 25, beg, started, 0, 0, rs, gs, bs,

re, ge, be

The variable beg specifies the background colour

number, and must have &80 added to it. In our

example, we are using colour 8 for the background,

so the beg parameter is &80 + 8. The next

parameter, startcol, defines the first colour number
of the sequence of 7 to be used by the Font

Manager for the anti-alias palette (7 + the

background make up the total of 8 levels of

shading). We have used colour 9 for this parameter

in order to have a contiguous set of colour numbers

for the palette.

When the program is run, the Font Manager will

create the anti-alias palette by re-defining logical

colours 8 - 15 as a set of shades intermediate

between the so-called start and end colours. These

8 new shades will constitute the anti-aliasing

palette. The start and end colours are defined in the

remaining 6 parameters of the call, and will normally

be the physical colours required by the user for the

background and foreground of his text. These 6

parameters are made up of two red-green-blue sets,

each of whose parameters range in value from to

240 in steps of 16 (just as in the COLOUR n,r,g,b

command - see RISC User Issue 2 page 24).

Line 180 uses the operating system call

"Font_FindFont" to tell the Font Manager to set up

and cache the Trinity font in point size 20 by 40.

The last call, made to "Font_Paint", displays the text

in the required font. The last two parameters of the

RISC User January/February 1988 13

Arrays and Matrices

Mike Williams investigates the powerful matrix operations provided in ARM Basic.

Not only are arithmetic operations on the

Archimedes very fast, but Basic V has been
significantly enhanced to simplify the programming
of matrix operations. As a result, many routines

which would previously have required the use of

nested FOR-NEXT loops and the like can now be

programmed by simple assignments. For example,

if we assume that a three dimensional array has
been defined as:

DIM array (20,20,20)

and that we now wish to assign the value -1 to each
element, then with no matrix operations we would
have to write:

FOR i»l TO 20

FOR j-1 TO 20

FOR k=l TO 20

array (i, j, k)=-l
NEXT k, j,i

Instead, using ARM Basic we can write:

array {) =-1

Not only is this much shorter, but an amazing 70
times faster!

In this short article I want to summarise some of

the more useful features of Basic V for manipulating

real or integer matrices (string arrays are allowed,

but most of the following operations are just

inappropriate). When an array is dimensioned, all its

elements are set to zero, but any value n may be

assigned to each element by writing:

array () =n

If n is to be replaced with any kind of expression,

then this will need to be completely enclosed in

parentheses, e.g.:

array () = (RND (1) *RND (1))

Otherwise some form of error message will result. If

you need to increment or decrement all the

elements of an array, then the '+=' or '-=' notation

will work with arrays. For example:
array ()+=SIN{x)

would increment all elements of the array by the

current value of SIN{x).

All elements of an array may have the same
quantity added, subtracted, multiplied or divided

using the format:

array 0=array() <operation> <expression>

where <operation> is any of +, -, * or / and
<expression> is any valid arithmetic expression,

enclosed in parentheses if it involves any
operations. For example:

array<)=array()/(2*PI)
would divide each element of arrayQ by the value

2*PI.

RISC User January/February 1988

You can also operate similarly on two arrays,

but all arrays involved must have the same
dimensions or an error will result. Such matrix

operations take the form:

arrayl {} =array2 (} <operation> array3()

where <operation> is again +, -, * or /. In this case,

the operation applies to corresponding elements, so

that:

arrayl {) =array2 () *array3 ()

would multiply corresponding pairs of elements
together.

True matrix multiplication is also possible using

the '.' symbol (dot product). In all cases, the

numbers of elements in appropriate rows and
columns must be the same - this derives from the

principles of matrix multiplication which is beyond
the scope of this article.

One other major improvement in Basic V is that

arrays may now be legitimately included as the

parameters of procedures and functions, and
declared as LOCAL if required. Arrays so declared

must also be dimensioned within the procedure or

function definition, but this is not necessary for

arrays passed as parameters.

A number of other facilities have also been
provided. DIM may be used dynamically to

determine either the number of dimensions of an

array, or the size of any dimension. For example:
PRINT DIM(array ()

)

would display the number of dimensions, while:

PRINT DIM(array () , 1) ,DIM(array () , 2)

would display the size of arrayQ as the number of

rows followed by the number of columns. This

information can also be used to dimension one
array to be the same size as another, e.g.:

DIM matrix (DIM (array 0,1) , DIM (array (> , 2)

)

which would dimension matrix to be the same size

as array. Lastly, the new keyword SUM will sum all

the elements of an array.

Basic V matrix operations clearly provide a

powerful and convenient way of manipulating

arrays. There are some omissions - you can't

specify 'slices' (a particular row or column), which is

a pity. Nevertheless, these new features will amply

repay investigation and experiment. They are

reasonably well described in the User Guide, but

make sure you refer to the Addendum (if supplied).

EH

15

This month's collection of visual effects includes routines to generate quadruple size

shadowed text, and two different kinds of 3D backgrounds.

QtMD-3/Z£D SHrfDOVfD 1 ill
This routine is handy for producing smart

looking titles and headings, without the need to

resort to Acorn's Fancy Fonts (dealt with
elsewhere in this issue). The anti-alias fonts

have a considerable overhead in disc storage

and loading time, and are also the subject of

strict copyright control. The method used here

is compact and easy to use. It works in all

modes but 3, 6 and 7, though the selection of

colours used in the accompanying program is

not appropriate for 256 colour modes, and the

3D effect may only be obtained in graphics
modes with four or more colours.

Whatever mode is in use (apart from 3, 6 or

7), the routine will double both the height and
width of the normal text font. It is called with the

format:

PROCquad ("Quad sized text")
or with:

PROCquad <text$)
where text$ holds the text to be printed. Before
the call is made, the text cursor should be
moved to the required start of text position

using, for example:
PRINT TAB (X, Y) ;

If you are going to use the routine in your
own programs, you will need lines 160 to 370.

These contain a pair of procedures which read

the computer's currently selected font (not

Fancy Font), and re-define four new characters

(characters 247-250) to make up a new extra

large letter. This is repeated with each
character output by the program. In addition

you will need lines 50 and 60, which dimension

two arrays, reserve some space, and define a

string variable.

The program which accompanies the

routine makes use of PORCquad in a special

way. Here we have called the procedure twice

with the same string of text, writing it in two

different colours, and to two slightly different

positions to give a shadowed, or 3D effect. In

order to do this we have not used TAB to set

the position of the text. Instead we have

invoked VDU5 which causes text to be printed

at the graphics cursor. Then, in lines 100 and
120, we have MOVEd the graphics cursor to

the required positions, immediately prior to

calling PROCquad.

The shadowed effect is achieved by writing

first in a dark colour and then in a brighter one.

You will see from line 80 that the dark colour

used (colour 8) is not black (0,0,0) but a dark

red (80,0,0). This, against a salmon pink

background (colour 9), ensures that the shadow
will not be too harsh. Similarly, the foreground

(colour 10) is not a pure white, but a slightly off-

white (defined with RGB components
192,192,192 in line 90). The size of the shadow
is given by the degree of offset between the two

MOVE statements referred to earlier. The
parameters currently used work well in the 40

and 80 column modes, but you may wish to

increase the offset for mode 2. You will also see

that in mode 2, the present text string is too

long, and overflows the line. Incidentally the

routine uses OSWORD 10 to read the

Archimedes' character definitions, and this

correctly copes with the various fonts held by

the machine, and selected with *ALPHABET.

10 REM >Quad5
20 REM Quad sized shadowed text

30 REM By Lee Calcraft
40 :

50 DIM B(8) ,C(8),D%10

16 RISC User January/February K

4RCHIMeH£S VISUALS

60 quad$=CHR$ (248) +CHR$ (247) +CHR$ (10)

+CHR$ (8) +CHR$ (8) +CHR$ (250) +CHR$ (249) +CHR

$(11)
70 MODE12:VDU5
80 COLOUR9,208,80,80:COLOUR8,80,0,0
90 COLOUR10,192,192,192:GCOL128+9:CLG

100 GCOL8:MOVE 100,600
110 PROCquadCRISC USER Magazine")
120 GCOL10:MOVE94, 604

130 PROCquadCRISC USER Magazine")
140 VDU4:END
150 ;

160 DEFPROCquad(text$)
170 LOCAL A,I,N,Q,R,S
180 FOR A=l TO LEN(text$)
190 PROCchread(ASC(MID$(text$,A,l))

)

2 00 FOR Q=0 TO l:FOR N=0 TO 7

210 C(N)=0
220 FOR 1=0 TO 3

230 C(N)=C(N)-(2 A (2*I)+2 A (2*I+1))*((B(
N) AND 2~(I+4*Q))>0)

240 NEXT: NEXT
250 FOR R=0 TO 1

260 S=4*R
270 VDU23,247+2*R+Q,C(S},C(S) ,C(S+1),C

(S+l) ,C(S+2) ,C(S+2) ,C(S+3),C(S+3)
280 NEXT: NEXT
2 90 PRINTquad$;
300 NEXT:ENDPROC
310 :

320 DEF PROCchread(I)
330 LOCAL A:?D%=I
340 SYS 7,&A,D%
350 FOR A=0 TO 7

360 B(A)=D%?(A+1)
370 NEXT:ENDPROC

7tf£ PUNIH tfftCI
The second program generates the square

"plinth" shape shown in the accompanying
photograph. As you will see from the listing, the

routine for generating the effect has been
parcelled up into a procedure for ease of use.

PROCplinth has a total of 7 parameters. The
first two are the graphics coordinates of the

bottom left corner of the plinth. The next is its

width, and the fourth the number of graphics

units between the inner and the outer boxes.

Finally come the three numbers of the colours

used for the plinth. They are supplied in the

order: top left edges, front face, bottom right

RISC User January/February 1988

edges. In our program, these colours are set up
in lines 60 to 80. To achieve the desired effect,

some considerable care is needed in the choice

of colour.

,.--.,

10
20

30

40

50

60

70
80

90

100

1}

110

,11)

120

,11)

130
140
150

)

160
170

180
190
200
210

REM >Plinth3
REM Raised Plinth
REM By Lee Calcraft

MODE 12
COLOUR9,192, 192,192
COLOUR10,144,14 4,144
COLOUR11,80,80,80

PROCplinth (0,0, 1000, 1000, 50, 9,10,1

PROCplinth (8 50, 612, 280, 280, 4 0,9, 10

PROCplinth (150, 150, 400, 4 00 ,2 0,9, 10

END

DEFPROCplinth (X, Y, WX, WY, W, CI , C2, C3

GCOLC1 : RECTANGLE FILL X,Y,WX,WY
GCOLC3:MOVE X,Y:MOVE X+WX,Y
PLOT85,X+WX,Y+WY
GCOL7:LINE X, Y+WY, X+W, Y+WY-W
GCOLC2
RECTANGLE FILL X+W, Y+W, WX-2*W,WY-2

220 ENDPROC
Continued on page 30

Next month's RISC User will feature a

"Colour Editor" allowing the easy selection

of colours for effects such as this.

17

RISC USER MEMORY EDITOR
By Barry Christie

|
O.S. 0.2, 0.3~T2~|

Display and edit the contents of user RAM with the RISC User Memory Editor.

The accompanying program, though
relatively short, provides a full screen display of

user memory in both hex and ASCII format,

with scrolling in both directions, and with editing

facilities in both hex and ASCII. In these
respects it offers considerable advantages over

the features provided by the debugging
module, which is assembler orientated, and
which does not provide full screen editing and
bi-directional scrolling.

To make use of the Memory Editor, first

type in the program and save it away. When it

is run, it requests a starting memory address in

hex within a given range. The range offered is

from zero to just below the machine's current

setting of HIMEM. If Return is pressed on a null

entry, the start address will be set to the current

value of PAGE.

As you can see from the accompanying
illustration, the display has three fields. These
hold RAM addresses in 16 byte steps, and
RAM contents in hex and ASCII respectively. In

the case of the latter, unprintable ASCII codes

are represented by a dot. To move around in

RAM, use the cursor keys alone, or together

with the Ctrl key. There are just two further

keys to remember: Escape will terminate the

program, while the "Print" key (to the right of

function key f12) will send the currently

displayed screen to your printer.

When the Editor is run it starts off in hex

editing mode, signified by the parentheses "()"

around the active RAM location. To edit RAM,
just enter new values in hex from the keyboard,

high byte first. The digit entered will appear first

in the low nibble position, and then be shifted to

the left if a second entry is made. To edit in

ASCII, press Tab, and you will see the

parentheses altered to square brackets. Now,
locations may be altered one byte at a time

using any keyboard character. You should take

great care about altering RAM, however,
because if you alter the RAM which is used by

the program itself, the program will crash. If this

happens you should use Ctrl-Break to clear

your machine, and then reload the program.

The Editor may easily be used to examine

or edit the contents of any disc file. The best

way to do this is to exit from the Editor by

pressing Escape, then load the target file into

RAM using:

*LOAD filename B000
The location &B000 is well clear of the Editor

program (providing that you have not altered

PAGE from its default). Then run the Editor,

and give B000 as the RAM address to be

examined. If you wish to resave an altered file,

leave the Editor by pressing Escape, and type:

*SAVE filename BO 00 nnnn
where nnnn is the address in memory of the

end of your file.

10

20

30

40

50

60

70

80

90

100

110

120

130

REM >MemEdit4
REM Program Memory Editor
REM Version A 0.4

REM Author Barry Christie
REM RISC User Jan/Feb 1988

REM Program Subject to copyright

MODE0: ¥0019,0,24 ,174,174 ,174

ON ERROR PROCerror:END
PROCinitialise
PROCmemoryeditor
END

18 RISC User January/February 1988

RISC USER MEMORY EDITOR

140 DEF PROCmemoryeditor
150 REPEAT
160 *FX 21,0
170 key%=GET
180 CASE key% OF

190 WHEN : PROCcheckprint
200 WHEN 9 : PROCtabkey
210 WHEN 136 : PROClineLL
220 WHEN 137 : PROClineRR
230 WHEN 138 : PROClineDD
240 WHEN 139 : PROClineUU
250 OTHERWISE : PROCbytechange
2 60 ENDCASE
270 UNTIL FALSE
2 80 ENDPROC
290 :

300 DEF PROClineLL
310 IF INKEY(-2) THEN PROCpageLL ELSE

PROClinesub(l)
320 ENDPROC
330 :

340 DEF PROClineRR
350 IF INKEY(-2) THEN PROCpageRR ELSE

PROClineadd(l)
360 ENDPROC
370 :

380 DEF PROClineUU
390 IF INKEY(-2) THEN PROCpageUU ELSE

PROClinesub(16)
4 00 ENDPROC
410 :

420 DEF PROClineDD
430 IF INKEY(-2) THEN PROCpageDD ELSE

PROClineadd<16)
4 40 ENDPROC
450 :

4 60 DEF PROCpageLL
470 PROCcursor (1) :curpos%-=curpos% MOD

16 : PROCcursor <tabkey%)

480 ENDPROC
490 :

500 DEF PROCpageRR
510 PROCcursor (1) : curpos%+=16-curpos%

MOD 16-l:PROCcursor(tabkey%)
520 ENDPROC
530 :

540 DEF PROCpageUU
550 memory%-=51

2

560 IF memory%>=boundl% THEN PROCpaged

isplay (FALSE) ELSE memory%+=512 :VDU7

570 ENDPROC
580 :

590 DEF PROCpageDD
600 memory%+=512
610 IF memory%<=bound2% THEN PROCpaged

isplay (FALSE) ELSE memory%-=512 :VDU7

620 ENDPROC
630 :

64 DEF PROClinesub{changes%)
650 PROCcursor (1)

660 curpos%-=changes%
670 IF curpos%<=curmin% THEN

680 memory%-=16
690 IF memory%<boundl% THEN

700 curpos%+=changes%:memory%+=16:VDU7
710 ELSE

720 VDU30,ll:curpos%+=16
730 PROClinedi splay (0, memory %)

740 ENDIF
750 ENDIF
760 PROCcursor (tabkey%)

770 ENDPROC
780 :

790 DEF PROClineadd (changes %)

800 PROCcursor (1)

810 curpos%+-changes%
820 IF curpos%>=curmax% THEN

830 memory%+=16
840 IF memory%>bound2% THEN

850 curpos%-=ehanges% :memory%~=16:VDU7

860 ELSE

870 VDU31,0,31,10:curpos%-=16
880 PROClinedi splay (31,memory%+496)

890 ENDIF
900 ENDIF
910 PROCcursor (tabkey%)

920 ENDPROC
930 :

940 DEF PROClinedisplay (taby%, address%

)

950 partl$=" ":part2$=" :OFF

960 FOR bytes%=0 TO 15

970 byte%=bytes%?address%
980 part2$+=FNnumtochr(byte%) :partl$+=

" "+FNnumtostr (byte%, 2)

990 NEXT bytes%
1000 PRINT TAB (3, taby%) FNnumtostr (addre

ss%,7} ;partl$;part2$; : ON

1010 ENDPROC
1020 : p.

RISC User January/February 1< 19

RISC USER MEMORY EDITOR

1030 DEF PROCpagedi splay (printer!)
1040 IF printer% THEN VDU2
1050 FOR line%=0 TO 31

1060 PROClinedi splay (line%,memory%+line
%*16):IF printer% THEN VDU1,10
1070 next line!
1080 VDU3:PROCcursor(tabkey%)
1090 ENDPROC
1100 :

1110 DEF PROCcheckprint
1120 printkey=GET
1130 IF printkey-128 THEN
1140 COLOUR 0: COLOUR 12 9: PRINT TAB (3, 31

) "PRINTING";

1150 COLOUR 1: COLOUR 128 : PROCpagedi spla
y{TRUE)

1160 ENDIF
1170 ENDPROC
1180 :

1190 DEF PROCbytechange
1200 PROCtabxy:IF tabkey% THEN PROCkeyv

alue ELSE PROChexvalue
1210 ENDPROC
1220 :

1230 DEF PROCtabxy
1240 char%=curpos% MOD 16 : tabx%=char%*3

+ll:taby%=curpos% DIV 16

1250 ENDPROC
1260 :

12 70 DEF PROCkeyvalue
1280 PROCprintvalue:PROClineRR
1290 ENDPROC
1300 :

1310 DEF PROChexvalue
1320 key%=INSTR {" 001122 334 4 556 67788 99Aa

BbCcDdEeFf ",CHR$key%) -1

1330 IF key%>=0 THEN key%=key%>»l : key%

+-(curpos%?memory% AND &0F) <<4 :PROCprint
value
1340 ENDPROC
1350 :

1360 DEF PROCprintvalue
1370 curpos%?memory%=key%
1380 PRINT TAB(tabx%+l,taby%)FNnumtostr
<key%,2);

1390 PRINT TAB (chrpos%+ char%,taby%)FNnu
ratochr (key%) ;

14 00 ENDPROC
1410 :

14 20 DEF PROCtabkey

20

14 30 tabkey%=NOT(tabkey%) :PROCcursor (ta

bkey%}

1440 ENDPROC
1450 :

1460 DEF PROCcursor (brackets

)

1470 CASE bracket! OF

1480 WHEN -1 : bracket $=" ("+skip$+ ")

"

14 90 WHEN ; bracket $="["+skip$+"]

'

1500 WHEN 1 : bracket$=" *«+skip$+" "

1510 ENDCASE
1520 PROCtabxy : PRINT TAB (tabx%, taby%) br

acket$;

1530 VDU31,chrpos%+char%,taby%
154 ENDPROC
1550 :

1560 DEF FNnumtochr (number %)

1570 IF number%<32 OR number%>12 6 THEN
=" ,

" ELSE =CHR$number%
1580 :

1590 DEF FNnuratostr (number%,length%)
1600 =STRING$(length%-LEN(STR$~ (number!

} }

, "0") +STR$~ (number%)

1610 :

1620 DEF PROCinitialise
1630 PRINT' '"Please enter required star

t address"
1640 PRINT"or press Return to start at

PAGE"
1650 PRINT"Acceptable range to ";~(HI

MEM-&200)SPC8;
1660 INPUT"&"memory$:CLS:ON
1670 IF memory$="" THEN memory %-PAGE EL

SE memory%=EVAL ("&"+memory$)

1680 COLOUR 0,120,0,32
1690 OSCLIC'FX 4,1") :OSCLI ("FX 225,2")

1700 tabkey%— 1 : skip$=CHR$9+CHR$9
1710 curpos%-0 : curmin%=-l ; boundl%=0
1720 chrpos%=61 : curmax%=512 :bound2% :=HIM

EM-512
1730 PROCpagedisplay (FALSE)

1740 ENDPROC
1750 :

1760 DEF PROCerror
1770 VDU7, 31, 3, 31: PRINT: COLOUR : COLOUR
129

1780 OSCLIC'FX 4,0"} :OSCLI ("FX 225,1")

1790 IF ERR-17 THEN PRINT "FINISHED ";

ELSE REPORT: PRINT " at line ";ERL;" ";

1800 COLOUR 0,0, 0,0: COLOUR 7 : COLOUR 12 8

1810 ENDPROC IJIj

RISC User January/February 1988

MENU ARCHIMEDES DISC MENU (Part 3)

By Lee Calcraft

Notes on using the special auto-load option on David Pilling's Disc Menu.

As we mentioned in the first part of this

series, the RISC User Menu has a special

facility engaged with the middle button of the

mouse, which allows you to select files from the

menu, and automatically engage a word
processor, or other software.

What happens when you click the middle

button on a filename is that the Menu stores the

selected filename in the operating system
variable FNAME. It then tries to EXEC in a file

called IMENU*. This means that the user can

create one or more IMENU files on his disc

which load the required application software,

such as a word processor, or whatever, then

set up function keys, assign the date, set up

printer options, etc. And finally, the EXEC file

can pick up the filename selected by the user

(and stored by the Menu in the variable

FMENU), and cause this to be loaded into the

application.

*| >!MENUedit
*

I

Auto Loader for ARMBE
*

| Version .

3

OSCLI ("KEY1 LOAD "+CHR$34+"<FNAME
>"+CHR$34+" |MEDIT|M")

*FX138, 0, 129

The system is completely flexible, and can

be used with almost any application. To
illustrate its use, a number of examples are

given. The first causes the selected file to be

loaded into the Basic Editor. As with each of

the examples, it should be saved as an EXEC
file, that is to say, without line numbers (either

use *BUILD or a word processor or text editor),

and should be given a file type of &FFE (type

*SETTYPE filename FFE). The name under

which it is saved must begin with IMENU, and

could be followed by the letters edit for

example, as a reminder of its function. The file

IMENUedit should be saved in the same
directory as the one containing the files which it

will be used to load; and note that no directory

should contain more than one IMENU file.

*| >!MENUww+
*

I

Auto Loader for Wordwise Plus
*

I

Version 0.3
*BUFFER ON
OSCLI ("KEY1 :D$="+CHR$34+"<SYS$D
ATE> <SYS$YEAR>"+CHR$34+" |M:F$
- " +CHR$ 34 + " <FNAME> " +CHR$ 3 4 + "

|

M

:LOAD TEXT F$ |M|M")
*$.MODULES . 65ARTHUR
*$. MODULE S.WW+
*FX138, 0, 129

The second example, which might be saved

as !MENUww+, loads files into Wordwise Plus,

and gives some idea of the flexibility of the

technique. It first turns on a printer buffer, and

causes the Emulator to be loaded from disc,

then Wordwise itself. Next it copies the system

date into Wordwise's variable D$, and the user-

selected filename into the Wordwise filename

variable F$, and then loads the file. If you wish

to set up your printer or function keys, this can

be performed at the very start of the EXEC file.

The third example loads any program into the

Twin text editor, with the LISTO option 8 set,

and with white text on a blue background.

*
I

>

!

MENUtwin
*

| Auto Loader for Twin
*

| Version .

3

*SET ALIAS$Blue ECHO | <1 9> I <0> I <4>
|<0>|<0>|<0>

OSCLI ("KEY3 LOAD "+CHR$34+"<FNAME>
"+CHR$34+" IMTWIN08 | M"+CHR$ 12 9+"B
lue|M|M")

*FX138, 0, 131

The whole system is quite flexible, so that

you may customise it to meet individual needs.

If you create any interesting IMENU files,

please let us know so that we may pass them

on to other readers. nr™

RISC User January/February 1988 21

OvErtHErRInBOW
by Mike Williams

We continue our series on the graphics capabilities of the Archimedes by delving into the

complex secrets of the 256 colour modes.

Last month we looked at how we can control the

choice of colour in those Archimedes modes which
allow up 16 colours on the screen at any one time.

This time we will look at how things are managed in

the 256 colour modes, that is modes 10, 13 and 15.

This is quite different to what happens in other

modes. Indeed, it would appear on first examination

that only 64 colours are possible, not the full 256.

The problem is that on the older BBC micros,

logical colours in the range to 127 (of which only

to 15 were used), specify a foreground colour, and
logical colours 128 to 255 specify a background
colour. It is Acorn's decision to maintain
compatibility with that system which is at the root of

our immediate problems. If we were to specify a

colour above 127, then the convention already

established would deem that this was a background
colour.

U8ING 64 [OLDURB
In practice, COLOUR or GCOL are used in the

256 colour modes, just as in all the other modes, to

specify a logical colour number, but in the range

to 63 (foreground). Adding 128 to any of these

specifies a background colour just as before. This

gives us, without any further effort, a range of 64
colours. For example:

COLOUR 15

would select a shade of yellow for text, while:

GCOL 14 8

would select a deep blue-green {colour 20 - since

148 - 128 + 20) as a graphics background colour.

USING 256 [OLQURB
In order to increase the number of colours from

64 up to the maximum of 256 we need to use the

additional keyword TINT. The value of TINT may be

used to add one of four levels of white to each of

the basic 64 colours. The standard format for

selecting one of the 256 colours is then:

COLOUR n TINT t

or:

GCOL n TINT t

where n is the logical colour number in the range

to 63 (128 to 191 for background colours), and t is

the tint level.

Now although there are only four levels of tint,

the value of TINT can be anywhere in the range

to 255 (not to 3 as given in early User Guides)

with the following meaning:

range meaning
0-63 level (min.)

64-127 level 1

128-192 level 2
192-255 level 3 (max.)

In practice, it is therefore best to use the values 0,

64, 128 and 192 when determining the level of tint.

The current (or default) level of tint is always applied

to all colours specified even if TINT is left out.

This default is set at (minimum white) initially.

In such cases all colours, including white, appear
slightly dull on the screen. To get the brightest white

(colour 63) you will need to set the tint level to 192,

though you will then find that black {colour 0)

appears as very dark (but visible) grey.

There are a few points to note. To ensure the

correct shade of colour I suggest that you always

use TINT with GCOL or COLOUR, unless you are

happy with the just the basic 64 colours. Note too,

that tint levels exist independently for text and
graphics. Thus specifying TINT in a COLOUR
command will not affect the level of tint applied in a

subsequent GCOL command, and vice versa, lastly,

the commands 'POINTER and MOUSE ON appear

to have the side effect of setting the tint level to its

maximum (192).

;

The accompanying program, Shades256,
displays (in mode 13) all 256 colours on the screen

together, and you may find this a useful colour

reference chart for modes 10, 13 and 15. The
colours are displayed in tabular form, and in blocks

of four tints at a time. The colour (i.e. a number in

22 RISC User January/February 1988

^ErtHErRINBOW

the range to 63) for any block is given by adding

together the appropriate row and column numbers.
In each block of four, each shade has increasing

amounts of tint added from left (darkest) to right

(brightest).

Essentially, the display is produced by two
nested loops, the outer one cycling through all 64
basic colour numbers, and the inner one cycling

through the four levels of tint (lines 130 and 140).

Each colour is displayed by selecting it as a
background colour (using COLOUR and TINT), and
then printing a space. The remaining statements

are concerned with the general layout and design of

the screen display. To exit from the program just

press Escape.

10 REM >Shades256
20 REM Program Shades256
30 REM Version A1.0
40 REM Author Mike Williams
50 REM RISC User Jan/Feb 1988

60 REM Program subject to copyright
70 :

80 MODE 13: OFF: ON ERROR GOTO 250

90 PRINTTAB(14,1) "256 COLOURS"
100 PRINT 'TAB (2) ;: COLOUR 148 TINT 64 :C

OLOUR 15 TINT 64

110 PRINT"Colour"TAB(12) "0"; TAB (19) "1"

; TAB (26) ;"2"TAB(33) ;"3";SPC3
120 COLOUR 128 TINT
130 FOR shade=0 TO 63

140 FOR tint=0 TO 192 STEP 64

150 IF shade MOD4=0 AND tint MOD256=0
THEN PRINT 'TAB (2) ;: COLOUR 148 TINT 64: PR

INTSPC(2-(shade<9)) ; STR$ ((shade DIV4)*4)

; SPC2 ;: COLOUR 128 TINT :PRINTTAB (10)

;

160 COLOUR 128+shade TINT tint
170 PRINT" ";

180 NEXT tint
190 COLOUR 128 TINT : PRINT SPC3;

200 NEXT shade
210 PRINT' 'TAB (2) ; : COLOUR 148 TINT 64:

PRINT STRING$ (35,CHR$32)

220 REPEAT UNTIL FALSE
230 END
240 :

250 MODE12: REPORT: PRINT" at line " ; ERL

:END

as6 COLOUR mQDEb EXPLAINED
It is quite instructive to examine in more detail

just how the colours are determined in a 256 colour

mode. The following program, Mixer256, will help in

this task. Superficially, it resembles last month's

Colour Mixing program, but it cannot be

RISC User January/February 1988

emphasized too much that the 256 colour modes
operate quite differently to the two, four and sixteen

colour modes.

Each of the 64 basic colours is made up of red,

green and blue components. Each of these may be

set at one of four levels (in the range to 3). The
colour number may then be computed in the

following way;
colour = 16*biue + 4*green + red

In other words, the use of COLOUR or GCOL is

linked to a byte in memory (8 bits). The bottom two

bits specify the level of red, the next two the level of

green and the next two again the level of blue. The

top two bits do not specify any colour at all, but the

top-most bit signifies foreground (if 0) or

background (if 1).

In addition, TINT is linked to a further memory
byte, and it is the top two bits of this which
determine its level. In this context it is more
convenient to think of the tint as being in the range

to 3, as with the colours, and then multiplying the

value in this range by 64 to specify TINT correctly.

Thus COLOUR (or GCOL) would take the form:

COLOUR 16*blue+4*green+red TINT 64*tint

When running the program, the large square

shows the currently selected shade of colour {in the

range to 63), and the three squares below indicate

the levels of red, green and blue. To the right of

these three, a further square shows the level of tint.

Initially, the program selects colour 63 (white) and

sets the tint to 3 (maximum whiteness) to give a

bright white result. The mouse pointer may be

moved to any of the squares on the screen, and

pressing the left-most (select) button will decrease

the colour value of that square by one, and pressing

the right-hand button (adjust) will increase that

colour value by one.

23

-ErtHErRInBOW

Clicking on the large square will not only change
that colour shade (up or down), but will adjust the

levels of red, green and blue accordingly.
Alternatively, clicking on the individual colour

squares will directly increase or decrease the levels

of these three colour components (and the changes
will be reflected in the colour of the large square),

while clicking on the tint square will independently

change this. The levels of all colours and tint are

continuously updated on the screen, and displayed

in numerical form as well.

As you will have seen, there is much more to

using the 256 colour modes on the Archimedes
than might at first be expected. Whether your own
applications of these modes demands simple or

complex colour handling you should find that the

two programs presented here will help.

In the above examples, we have not at any time

re-defined any of the physical to logical colour

assignments (as we did last month in other modes
with VDU19). Each shade displayed has been
obtained simply by specifying the appropriate colour

number and tint level required. It is possible to re-

assign the physical colours used in these modes,
but it is a complex process, and one which Acorn

advises against whenever possible.

10 REM >Mixer256
20 REM Program Mixer256
30 REM Version Al .

7

40 REM Author Mike Williams
50 REM RISC User Jan/Feb 1988

60 REM Program subject to copyright
70 :

80 ON ERROR GOTO 670

90 MODE15: OFF:* POINTER
100 VDU19, 1,24,240, 96,0
110 VDU19, 1,25, 112,96, 112

120 VDU19,2,25,240,0,112
130 COLOUR 15 TINT 192

135 COLOUR 148 TINT 64

140 PRINTTAB(22,1) " 256 COLOU
R MODES "

150 red=3:green=3:blue=3
155 shade=63:tint=3
160 REPEAT
170 PROCmouse
180 PROCboxes
190 TIME=0: REPEAT UNTIL TIME>5

200 UNTIL FALSE
210 END
220 :

230 DEFPROCboxes
240 GCOL shade TINT 64*tint

250 RECTANGLEFILL 345,420,590,500
260 FOR box=l TO 4

270 PROCrect (box)

280 NEXT box
290 ENDPROC
300 :

310 DEF PROCrect (box)

320 GCOL FNrgb(box) TINT 64*tint

330 RECTANGLEFILL 200*box+145, 200, 190,

200
340 PRINTTAB(23,27) "Blue="; blue; TAB (36

, 27}"Green=";green;TAB<49,27) "Red=";red;
TAB(61,27)"Tint=";tint

350 PRINTTAB (24, 29) "Colour - 16*";blue
;" + 4*"; green; " + ";red;" = ";FNjust(sh
ade,2)

360 ENDPROC
370 :

380 DEF PROCmouse
390 LOCAL p,q,x,y, state
400 MOUSE x,y,state:p=(5-2*state)/3
410 CASE state OF
420 WHEN 1,4

430 IF FNTest (x,y, 345, 420, 590, 500) THE

N shade= (shade+p+64) MOD64 : PROCsetrgb
440 IF FNTest (x, y, 345, 200, 190, 200) THE

N blue=(blue+p+4)MOD4
450 IF FNTest <x,y,545, 200, 190, 200) THE

N green= (green+p+4)MOD4
460 IF FNTest (x,y, 745, 200, 190, 200) THE

N red={red+p+4)MOD4
470 IF FNTest (x,y, 945,200, 190, 200) THE

N tint=(tint+p+4)MOD4
480 ENDCASE
490 shade=16*blue+4*green+red
500 ENDPROC
510 :

520 DEF FNrgb(box)
530 IF box=4 THEN =63

540 =shade AND (3*2 A (6-2*box)

)

550 :

560 DEF PROCsetrgb
570 red=FNrgb(3)
580 green=FNrgb(2)/4
590 blue=FNrgb(l)/16
600 ENDPROC
610 :

620 DEF FNjust (p,w)=STR$ (p) +STRING$ (w-

LEN(STR$(p)),CHR$32)
630 :

640 DEF FNTest (x,y,xl,yl,w,h)

650 IF x>=xl AND xOxl+w AND y>=yl AND

y<=yl+h THEN =TRUE ELSE =FALSE

660 :

670 MODE12: REPORT: PRINT" at line ";ERL

:END

24 RiSC User January/February 1988

$££# TO ftRCfHlMEimS LI9&S
Reviewed by Dennis Weaver

Many Archimedes users have upgraded from
the BBC Micro or Master, and as a consequence,
have quantities of software on 5.25 inch discs
which they would like to transfer to the Archimedes.
To meet this need a number of suppliers have
announced RS232 transfer links, while others have
proposed connecting 5.25 inch drives to the
Archimedes. In this brief review, we will be looking

at two packages which follow the former route.

iB%AI9^0 {FrtS ,(DISC C09^ycE cR3I09i <KIrr
In spite of their somewhat unlikely name,

Brainsoft have produced a competent, and keenly
priced package.
For just £14 (no

VAT), you get a
transfer lead and
two discs, one
for the Beeb, and
one for the

Archimedes. The
manual is brief

and reasonably
clear, and the
lead, though only

1 metre in

length, is well

made.

The principle used by
the Brainsoft package is to

allow the BBC Micro with its

disc drive (DFS format only

at the moment) to behave
as an additional disc drive

on the Archimedes. When
you boot the discs as
instructed, the Archimedes
displays a modified version

of Acorn's Desktop (copyright Acorn!). If you click

on its extra disc icon, your BBC disc is catalogued,

and you may then use the mouse to mark any
number of files for transfer. On clicking the menu
button, a series of options is offered, including one
to transfer all marked files to the Archimedes 3.5

inch disc.

All appears to function as described in the

manual, except that I could not get the package to

work with the new series one operating system.

Once Brainsoft have upgraded their package to

work with ADFS discs, and to cope with the series
one operating system, they will have a most
competitive product.

fh(BEfBUq'S 'WCrtlMETfLS ST$JAL LI9&C
At £17.25 this costs a little more than the

Brainsoft unit, and contains just one 3.5 inch disc

with lead and manual. But the software is more
sophisticated, and the accompanying lead is

somewhat longer at 3 metres in length. To get the

BEEBUG unit running for the first time, you must
boot the 3.5 inch disc on the Archimedes, and then
type two FX commands on the BBC micro. The

Beeb's part of the transfer
software is then ported across
from the Archimedes, and can be
saved for subsequent use.

The BEEBUG package, which
will handle DFS or ADFS format

Beeb discs, provides the user
with a dual window system
working under WIMPs which

allows you to move
around the direc-

tories of either Beeb
or Archimedes disc,

and to mark any or

all of the files (and/or

directories) from
either machine,
using the mouse.
When marking is

complete, the files

are automatically
transferred to the

second machine.
Complete directories

may be transferred

in this way, and the software will automatically

create new directories on the destination disc where
necessary. Like the Brainsoft unit, the BEEBUG
package permits the transfer of ail types of file, and
when transferring from Beeb to Archimedes, it also

attempts to assign file types intelligently.

'Disc Conversion JQi, £14,00

'Brainsoft are on 01-4860321

Archimedes Serial Link^ £1 7.25 (Members)

'BtfUBUQ art on (0727) 40303 QJ|

RISC User January/February 1988 25

SYSTEM DELTA PLUS
Mike Williams and Mark Sealey have compiled this report on Minerva's latest database for

the Archimedes, System Delta Plus.

RISC User has already reviewed Minerva's
earlier 'Deltabase' package (see the November
issue), and a thoroughly workmanlike product it

was found to be. Big brother, in the form of
System Delta Plus, is now available but at a
much higher price. This time Minerva has fully

exploited the WIMP environment of the
Archimedes to produce a highly attractive
looking package.

Minerva claims that despite the relatively
low price, System Delta Plus offers facilities as
good as {if not better than) the likes of dBase,
Lotus 123 and other PC software, plus the
bonus of the enhanced graphics of the
Archimedes. Those accustomed to the lower
price of older BBC micro products may take a
little more convincing.

Strictly speaking, System Delta Plus is a set
of sophisticated database commands (star
commands) which can be used in conjunction
with Basic to build a tailor-made database. A
complete system designed in this way and
referred to as WIMP Card Index is supplied as
part of System Delta Plus. As it is assumed that

most users will buy the package for the WIMP
Card Index, the accompanying manual, and
this review, concentrate on this. For the more
advanced user, the full power of System Delta
Plus is always available for those applications
that warrant it.

The manual - whilst being better than the
one for Deltabase - is still a bit of a
compromise. It consists of a snazzy plastic clip-

binder containing over 120 pages of very
ordinary looking text with a good few black and
white illustrations. It is rather disappointing after

the glossy and colourful cover. Nor is the
organisation of the material particularly well

thought out, although you'll find everything you
need - eventually. There is an introductory
tutorial, called the 'Experimental Section', and a
rather short reference section at the back
where all the System Delta Plus functions are

listed with a brief explanation. On the whole we
feel that the manual performs better as a
reference when you are already familiar with

the package and know where to find what you
want.

This aside, the WIMP Card Index can be
thoroughly recommended. Its capacity is

impressive, though neither a standard 800K
floppy nor even a 20MByte hard disc will

provide anywhere near the storage needed for

the maximum 2.14 billion records which the
system is theoretically capable of handling. And
fields are still limited to the maximum 255
character length permitted by Basic. Several
files can be open at the same time, and it is

quite possible to browse through one file while
printing a report from another and searching a
third. The system does slow down in these
circumstances but this multi-tasking
environment can be of real value when
comparing data.

All of this is managed through a system of

WIMP menus. These control all the usual
database functions, including the option to

divide any file into as many as 32 subsets, each
of which may be treated quite independently of

the others, and of the main file. At this level you
can also perform mathematical and statistical

operations on data.

A menu bar across the foot of the screen
gives you constant access to a number of

additional functions. These allow for the input of

both Operating System and System Delta star

26 RISC User January/February 1988

SYSTEM DELTA PLUS

commands as well as monitor and printer

adjustments. A wrist-watch and pocket
calculator of the usual simple style are also

provided, and can be selected and positioned

on the screen. These hardly seem essential

adjuncts of any database system, and one is

faced with the conclusion that Minerva has
succumbed to the temptation to exploit the
Archimedes graphics capability with some
pretty but unnecessary images. Although the

menu screens are remarkably uncluttered and
easy to read, do you really want to be able to

display and set a wristwatch?

In practice, the menu system works well.

Clicking the menu button of the mouse
anywhere on the empty screen produces a
menu from which you can create a new file or

open an existing one. Other global options are

also available from this menu which allow you
to branch sideways to other menus for sorting,

data transfer and the creation or modification

both of file structures themselves and layout

formats.

Once a file has been opened, a window
appears on the screen displaying the first

record with a panel of control icons for

browsing backwards and forwards through the

records. Pressing the menu button with the
pointer anywhere within this 'data window'
produces a different menu with options
appropriate to record handling (Find Field, Find

Card, Delete Card etc), and several options can
be followed to further sub-menus.

These menus are very easy to use, with

prompts for confirmation when it matters.

Naturally, when creating a new file, you can
arrange for data fields to be positioned
wherever you want in the data window, with

separate text prompts of your choice. It is also

possible to alter your record design later,

including even the addition of extra fields if you
wish. What is more, data held in a particular

subset could also form the basis of a new file

altogether. Nothing has to be re-entered.

The basic routines are all in ARM machine
code. The full System Delta Plus is really a

suite of overlays in Basic to tie them together.

So the user with the right knowledge could
customise and manipulate their own database
by means of some 41 primary commands. For
example:

*SDfind <string$> <file>
finds the card containing <string$>. By the time

you read this, an Advanced Programmer's
Manual for this product will also be available to

help, although the majority of users will

probably not want to delve this deep.

There is also an Import facility that handles
data from Viewstore, the Computer Concepts
Inter-series, BEEBUG's Masterfile, pure ASCII,

Mini-Office, Alpha-Base, Beta-Base, dBase,
Lotus, DataGem and the new BBC Uniform
formats. Files can also be created that are

downward (BBC System Delta) compatible.

CONCLUSION
The speed of System Delta Plus is

impressive, and the constant but unobtrusive

on-screen progress reports (when sorting for

instance) add to the overall friendliness. For the

experienced business user who switches, say,

from dBase III to an Archimedes system, the

WIMP Card Index will win hands down. It is

easier to understand and control what's
happening and certainly much quicker. One of

the databases that we have tried is 175K long,

has four fields and 600 records. It takes just

four minutes to sort on three fields.

Data handling can be a very involved
process, and Minerva have certainly gone for a
very comprehensive package with System
Delta Plus. Nevertheless, the package
succeeds in being easy to understand, fast in

operation, and enjoyable to use. System Delta

Plus sets a high standard for database software

on the Archimedes, and one that deserves to

last for some time to come.

Product System Delta Plus

Supplier Minerva Systems
69 Sidwell Street,

Exeter EX4 6PH.
Price £69.95 inc. VAT

RISC User January/February 1988 27

A \@m M&\? F®[§ A[§<£HI
By Lee Calcraft

There are some programmers who say that they cannot really get the feel of a machine
without understanding its memory map. For those and others, here are some brief notes on

the Archimedes' memory map.

The first problem encountered when
mapping the memory of an Archimedes is that,

unlike the trusty Model B, RAM is not

permanently located at a given address. On the

model B, you could be sure that there was
physical RAM from address &0 to &7FFF. On
the Archimedes, the user has no direct access
to physical RAM whatsoever. All RAM
accessed by the user, whether through
indirection operators or from machine code,
appears at a given so-called logical address.
This logical address can range from &0 to

&1FFFFFF (0 to 32 Mbytes), and since the
machine can have a maximum of 1 Mbyte of

physical RAM (4 Mbytes for the 400 series),

there will be a great deal of logical RAM which
does not map directly on to physical RAM. By
contrast, every byte of physical RAM always
has a corresponding (though changeable)
logical address. If from Baste you try to access
RAM at a logical address which is not mapped
on to physical RAM, you get the fatal (and
untrappable) error "Abort on data transfer". For
example try (with no harm to your machine)
PRINT ?&A1 2345.

The accompanying table gives the

allocation of RAM on Archimedes machines,
and should be valid for both the 300 and 400
series. The precise allocation of RAM within

this map is made at power-up, and depends on
the configured settings. You are referred to last

pages of 32K on a 400 series) to sprite use,

making 80K (or 320K) in all. This RAM would
be allocated from &1 400000 upwards. All other

user allocations on the table are made in the

same way (i.e. upwards from the base
address), except for screen RAM. This is

allocated downwards from the base address
(i.e. from &1FFFFFF downwards). To confuse
things a little further, the base address of any
given screen is the lowest memory location of

the allocated area (e.g. &1FD8000 on a
machine with 160K allocated to screen use).

This means that the screen base address (as

distinct from the screen allocation base
address) is a variable quantity.

You may have noticed one apparent
omission from the RAM allocation table. As you
can see, there is no individual allocation for font

use, even though font space is assigned using

the *CONFIGURE command. The reason for

this is that font space is taken from the
relocatable module area. This means that the

amount of RAM reserved in the RMA area is

actually the sum of three components: the block

of RAM automatically taken by the operating

system for workspace for resident modules,
plus the amount of configured font space, plus

the configured RMA space. This can add up to

a very large allocation indeed, given that the

modules supplied with the series one system
require over 1 1 0K of workspace.

BASE ADDR FUNCTION ALLOCATION ALTER WITH
1FFFFFF Screen Memory 0-480K •CON.SCREENSIZE
1 F00 000 Cursor/System Space 32K fixed

1 COO 000 System Heap/Stack 16K-3M *CON.SYSTEMSIZE
1800 000 Relocatable Modules 0-4M *CON.RMASIZE
1400 000 Sprite Area 0-4M *CON,SPRITESIZE

1 000 000 RAM Filing System 0-4M "CON.RAMFSSIZE
0008 000 Applications (eg Basic) Dynamic
0000 000 System Space 32K fixed

month's article "Configuring Archimedes" for

further details; but to give an example, if you

use 'CONFIGURE SPRITESIZE 10 you will

allocate 10 pages of 8K on a 300 series (or 10

As a tailpiece to this article, we shall be
publishing next month a program to map out

the precise allocation of RAM in any machine
over the full 32 Mbyte range.

28 RISC User January/February "K

Another crop of hints, tips and information rounded up by Lee Caicraft.

BUILT IN SCREEN DUMPS
With the new operating system there is a resident module

called Hardcopy, which provides 3 mono printer dumps

for the Epson FX, MX and RX printers. The commands

are called 'HARDCOPYFX, 'HARDCOPYMX and

*HARDCOPYRX respectively. The syntax is the same for

each:

*HARDCOPY vert/horiz Xscale Yscale
Margin Threshold

The first parameter determines whether the dump is

printed normally (0) or widthways (1). The next two give

the horizontal and vertical scale, and should normally be

set to 1. Larger values will give a larger printout. Next

come the left hand margin, and the threshold (0-15) at

which the dump output changes from black to white. A

good range of parameters to try is:

*HARDCOPYFX 110 5

*COUNT FOR COUNTING DISC SPACE
The command *FREE will tell you how much free space

you have left on a disc. But with the series one operating

system, there is a new and powerful command, *COUNT,

for giving much more detailed information. If you type:

*COUNT name

it will display the length of the file name. But if name is a

directory it will give the disc space used by that directory,

including all sub-directories. The command will accept

wildcards, and if you type:

* COUNT $

it will give the space used for the whole disc, sub-divided

into directories. This is very useful when you need to find

out how a disc has suddenly become full.

Better yet, there is a series of options (set using *SET

Count$Options, similar to those for *COPY) which allow

you to determine recursion, verbose display etc (type

*HELP COUNT for details). If you use:

*COUNT $ V

you will get a display (or printout) of every file on your disc

together with its length, all grouped by directory.

CLEARING THE MOUSE
Although there is an FX call to flush the mouse's input

buffer (See Hints and Tips, Vol.1 Issue 2), you can still get

problems of one mouse button input overflowing into the

next. One way to avoid this is to insert a line which waits

until the user has stopped pressing any of the mouse

buttons, before the next input is used. A suitable line

might take the form:

REPEAT MOUSE X,Y,Z: UNTIL Z=0

Depending upon the application, you may need to follow

this with a line which waits until a new button is pressed:

REPEAT MOUSE X,Y,Z: UNTIL Z>0

ALTERED RUN AND FILE PATHS
On operating systems 0.3 and above, the syntax for the

*SET File$Path and *SET Run$Path commands has been

altered. On all operating systems later than 0.2, a dot "."

must appear as terminator for each file path in the

sequence supplied. To take an example, the command:

*SET RUNSPATH ,%,$. MODULES
tells operating system 0.2 to look in the current directory,

then in the library directory and finally in a directory called

$.MODULES, whenever 'filename (or *RUN filename) is

issued. The space before the first comma is essential.

On all operating systems greater than 0.2 the *SET

command must be altered to:

*SET RUN$PATH ,%.,$. MODULES.

The same syntax change has occurred with *SET

FIIe$Path. This latter command determines the directories

searched during other 'read' file operations, including

*LOAD.

TWIN AUTO-LOAD
If you use the following alias:

*SET Alias$@LoadType_FFE TWIN %*0

every EXEC or Command file (or any other file of type

FFE) which you attempt to load will automatically cause

TWIN to be loaded in with the selected file in its buffer.

This can be very useful when used in conjunction with the

RISC User Disc Menu. Whenever you double click with

the adjust button (i.e. invoking a load) on a Command or

EXEC file, it will go into TWIN ready for you to edit it.

The Reference Manual, page 21 6, states that the syntax

of this command has changed on operating systems 0.4

(sic) and above. This does not appear to be the case.

BASIC APPEND
APPEND is a very useful addition to BBC Basic. If you

type:

APPEND "filename"

the file called filename will be appended to any currently

RISC User January/February l
c 29

Mitrbmr tmu
resident Basic program. One particularly useful feature of

the command is that the appended file is automatically

renumbered to match the numbering of the resident

program. You can therefore save procedures and so on

as ordinary Basic files, without paying any attention to line

numbers. Then whenever they are required, they can be

appended to a program under development.

WHICH OPERATING SYSTEM?
There is no simple way to test which operating system

you have from within a running program. But the following

function does the trick:

10 rem >ostest4
20 PRINTFNversion
30 END

40 :

50 DEFFNversion
60 SYS 6+2 A 17,0,0 TO A%

70 A$="":A%+=11
80 FOR B=0 TO 3

90 A$+=CHR$ (A%?B)

100 NEXT:=VAL{A$)

The number returned is the operating system number.

Early operating systems will return 0.2 or 0.3, while the

new series one operating system returns 1 .2.

FINDING UNPLUGGED MODULES
You can use *UNPLUG modulename to permanently

unplug any non-essential relocatable module. It is useful

to know that *UNPLUG with no parameter lists all those

modules that have been unplugged. Use *RMREiNIT
modulename, followed by Ctrl-Break, to reinstate them.

Thanks to Dave Clare for this hint.

DESKTOP FUNCTION KEY RETRIEVAL

After you have used the Desktop, even from the new

operating system, you will find that the function keys have

been inadvertently left disabled. To retrieve them, use

•FX225.1

J^

Please send your Hints & Tips to the Editors

at the editorial address given at the end of

the magazine. All contributions welcomed.

ARCHIMEDES VISUALS (continued from page

BLUi BARS
Our last routine this month generates a

static 3D background in shades of blue, which

could be used with the quad procedure above

to extremely good effect. A set of blue bars are

given a 3D effect by the use of a small dark

band and a wider bright band between each
bar. This background works very well indeed

with certain kinds of text display, and has been

used in the second of the two programs
accompanying the article on anti-alias fonts

elsewhere in this issue.

10 REM >BlueBars4
20 REM 3D Background Effect
30 REM By Lee Calcraft
40 :

50 MODE12
60 COLOURS, 0,112, 208
70 COLOUR1Q, 0,160, 240

8 COLOUR11,0, 0,0

90 :

100 GCOL128+9:CLG
110 FOR Y=0 TO 1023 STEP 96

120 GCOL10: RECTANGLE FILL 0,Y,1279,12

130 GCOL11: RECTANGLE FILL 0,Y+12,1279,

140 NEXT

30 RISC User January/February 1988

Computer Concepts' RDIT1 Podule
Previewed by Lee Calcraff

The CC ROM Podule should be available

by the time you read this brief preview. It works
very much like a BBC micro ROM board, and
will take 7 ROMs, EPROMs or RAM chips,

each of which may be up to 128K in size. It has
optional battery back-up, and can give the user

a total of 896K of extra storage. The neatly

designed board fits inside the Archimedes, and
must be plugged into the so-called 'Podule
Backplane'. This latter device, supplied by
Acorn at around £40, plugs into the
Archimedes PCB to create two podule sockets,

one of which is used by CC's board.

After installation, and a very simple
initialising process, the ROM Podule becomes
operational. You can check its presence with

the command *ROMPOD n where n is the

podule number (normally or 1), depending on
whether the board is in the upper or lower

podule socket). This displays a list of the ROM
and RAM chips plugged into the board. To
make use of the podule, you must first engage
the ROM filing system (RFS) by typing *RFS.

Once you have done this, all filing system star

commands are directed to the ROM/RAM filing

system implemented on the board rather than

to the ADFS (or ANFS). For example, typing

*CAT will catalogue all resident ROM and RAM
files, while *FREE will give the number of free

bytes of RFS RAM, and so on. All the file

operations from Basic also apply to the RFS,
so to save a file, just type SAVE "filename".

As you may have gathered from the
foregoing, the Archimedes does not allow

software to be run directly from a ROM Podule
in the way that the machine's ROM-based
modules run from ROM. Each RFS file must be
loaded into the computer's main memory first.

This loading process is about twice as fast as

using the ADFS with floppies, but of course it

uses up valuable RAM in the same way as
loading files from disc.

Even so, the RFS implemented on CC's
ROM podule offers the user a number of

advantages. First of all, the speed of loading

and the fact that all of its files are permanently
resident in the machine (including those in

RAM, providing that the optional battery back-

up is fitted) makes it useful for storing

frequently used utilities and applications. For
example, you might keep the 6502 Emulator in

podule RAM together with frequently used
fonts, and perhaps the Twin editor. Additionally

you can store auto-boot files on the RFS, and
configure your machine to automatically run

these at power up. If you wish, you can blow all

these files on to EPROM with the aid of a

special WIMPs driven ROM generator program
supplied with the podule (though you will also

need an EPROM blower for this).

Apart from its massive provision of battery-

backed RAM, a major reason for buying a ROM
Podule is that all of CC's new software for the

Archimedes will only be supplied on ROM, and
will only run from a ROM podule. From first

impressions, it looks as if their software will be

well worth the outlay - especially since they are

intending to discount the Podule to purchasers

of their Archimedes software, though not the

Inter series of products. rrra

Computer Concepts ROm Podule, £56.35 inc VflT

(battery back-up LI 1.50 extra).

Computer Concepts

Gaddesden Place, Hemel Hempstead HP2 6EX.

Tel. (0412) 63933

RISC User January/February 1988

RISC USER magazine
\ \ \ \ \

\-

\

\

I

/

I / / / / 7

MEMBERSHIP
RISC User is available only on subscription, with a special introductory rate until early
1988. Full subscribers to RISC User may also take out a reduced rate subscription to
BEEBUG (the magazine for the
BBC micro and Master series).

All subscriptions, including
overseas, should be in pounds
sterling. We will also accept
payment by Connect, Access
and Visa, and official UK orders
are welcome.

BACK ISSUES
We intend to maintain stocks of back issues New subscribers can therefore obtain earlier
copies to provide a complete set from Vol.1 Issue 1. Back issues cost £1.20 each. You
should also include postage as shown:

Subscription Rates (12 Months)
RISC User BEEBUG

(reduced rates)

UK, BFPO.Ch.ls £12.50 £ 8.00
Rest of Europe &Eire £18.00 £10.00
Middle East £22.50 £1 1 .00

Americas & Africa £25,00 £11.50
Elsewhere £27.00 £12.00

I

Destination

First Issue

Each subsequent Issue

UK, BFPO, Ch.ls

40p
20p

Europe plus Eke
75p
45p

Elsewhere
£2
85p

I

t

1

MAGAZINE DISC

k

The programs from each issue of RISC User are available on a monthly 3.5" disc. This will be
available to order, or you may take out a subscription to ensure that the disc arrives at
the same time as the magazine. The first issue (with six programs and animated graphics
demo) is at the special low price of £3.75. The disc for each issue contains all the
programs from the magazine, together with a number of additional items by way of

demonstration, all at the
standard rate of £4. 75.

Disc subscriptions include
postage, but you should add 50p
per disc for individual orders.

All orders, subscriptions and other correspondence should be addressed to:

RISC User, Dolphin Place, Holywell Hill, St Albans, Herts AL1 TEX.

Telephone: St Albans (0727) 40303
(24hrs answerphone service for payment by Connect, Access or Visa card)

The prices for magazine disc

Single issue discs

Six months subscription

Twelve months subscription

s are shown below:

UK Overseas
£ 4.75 £ 4,75
£25.50 £30.00
£50.00 £56.00

TT I II \ \ \ \

